BTE1522 Innovation – Week 12 – SSH and Data Visualisation

Today we explored SSH (Secure Shell) and data visualization using the Raspberry Pi platform. This is the final session before students embark on their final projects, providing them with essential skills in remote control and data acquisition.

SSH Connection with Raspberry Pi – We began by establishing an SSH connection to our Raspberry Pi using Putty, a widely-used SSH client. Through SSH, students learned how to remotely control their Raspberry Pi from their local machines, enabling seamless interaction with the Pi’s command-line interface. Navigational commands such as cd, ls, pwd, and mkdir were explored, empowering students to navigate the file system, create directories, and manage files effortlessly.

Data Visualization with Adafruit and BME280 -The session also featured a demonstration of data visualization using the Adafruit platform and the BME280 sensor. Students gained hands-on experience in acquiring environmental data such as temperature, humidity, and pressure using the BME280 sensor, a vital component for IoT (Internet of Things) applications. By visualizing this data, students could better understand real-world applications of sensor data and its significance in various projects.

Remote Python Program Execution -A key highlight of today’s activities was the execution of Python programs remotely via SSH. Students learned how to run Python scripts on their Raspberry Pi from their local machines, enabling them to execute code, perform data analysis, and control hardware components without direct physical access to the Pi. Commands such as nano for text editing and cat for displaying file contents further enriched their understanding of remote file management.

Exploring System Information:
To wrap up the session, we delved into exploring system information commands such as uname -a, df -h, and free -h. These commands provided insights into system specifications, disk space usage, and memory utilization, essential for monitoring and optimizing Raspberry Pi performance.

I look forward to the upcoming project phase, I am confident you  are well-prepared to could apply their this knowledge and skills in developing innovative Raspberry Pi-based solutions.

Nurul

May 24th

URP and PSAD Projects

Following up with Undergraduate Research Project (URP) and Projek Sem Akhir Diploma (PSAD). Both the students are progressing well.
Haikal is completing his project prototype – almost complete with portable AI prediction and cloud data logger.
Rafie has fabricated a novel microstrip structure with CP properties. A couple of tuning more is required to conclude his research findings.

 

Well done everyone!

 

 

 

 

 

 

 

 

BTE1522 Innovation – Week 11 – Global Classroom Dr Basuki Rahmat: Universitas Pembangunan Nasional “Veteran” Jawa Timur

Today’s global classroom session was an honor as I had the privilege of hosting Dr. Basuki Rahmat from Universitas Pembangunan Nasional “Veteran” Jawa Timur. Dr. Basuki’s expertise in IoT-Based Real-Time Temperature Monitoring and Controlling System, particularly the introduction of the Internet-Based Temperature Control Lab (iTCLab), enriched our learning experience and provided valuable insights into the subject matter.

Here’s a recap of today’s session:

  1. Navigating IoT Platform Selection – Choosing the right IoT platform is crucial for ensuring smooth data transmission, scalability, and compatibility with existing systems. This highlights the importance of evaluating different platforms based on factors like ease of integration, security features, data analytics capabilities, and support for industry standards.
  2. Crafting Robust IoT-Based Temperature Monitoring Systems – Designing an IoT-based temperature monitoring and control system requires careful consideration of various factors, including sensor selection, data transmission protocols, and remote control interfaces. This underscores the significance of robust system design to meet specific application requirements while maintaining reliability and efficiency.Understanding Digital PID Controllers and Input Limits:In IoT-based temperature control systems, understanding the limitations of digital PID controllers in receiving input is crucial. This underscores the importance of comprehending the operational characteristics and limitations of PID controllers to optimize system performance and ensure stability. By understanding how PID controllers operate and their impact on temperature control, students can effectively tune parameters and address input limitations for enhanced system efficiency.
  3. Exploring Applications of iTCLab Temperature Monitoring Systems – The iTCLab temperature monitoring and control system offers versatile applications across various industries, including manufacturing, agriculture, healthcare, and environmental monitoring. Recognizing the system’s ability to provide precise temperature control for quality assurance, process optimization, and regulatory compliance empowers students to envision innovative solutions tailored to specific industry needs.
  4. Optimizing MQTT for Low-Power Devices – Acknowledging the importance of energy efficiency and resource optimization in IoT deployments, optimizing MQTT for low-power devices involves minimizing data overhead, reducing transmission frequency, and implementing power-saving techniques. By mastering MQTT optimization techniques, students can design efficient and sustainable IoT solutions for diverse applications.

Today’s global classroom session gives a valuable insights into the IoT-based real-time temperature monitoring and controlling system, focusing on the technological advancements, challenges, and opportunities in the field.

The interactive discussions and active participations from students highlighted the diverse applications, design considerations, and optimization strategies relevant to IoT deployments.

I look forward to such collaborative learning environments and engage in knowledge-sharing initiatives to drive innovation and address real-world challenges effectively.