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Abstract 

In this paper, the steady boundary layer flow and heat transfer over a stretching sheet with Newtonian heating in which the heat transfer 
from the surface is proportional to the local surface temperature is studied. The nonlinear boundary layer equations are transformed into 
ordinary differential equations which are then solved numerically via the Keller box method. Numerical solutions are obtained for the 
wall temperature and the local heat transfer coefficient for various values of the Prandtl number and the conjugate parameter . 
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1. Introduction 

The fluid dynamics due to the stretching sheet is important in extrusion processes. The production of sheeting 
material arises in a number of industrial manufacturing processes and include both metal and polymer sheets like 
the cooling of an infinite metallic plate in a cooling bath, paper production, glass blowing, etc. The quality of the final 
product depends on the rate of heat transfer at the stretching surface. The forced convection boundary layer over a 
stretching sheet was first studied by Crane [1]. Later, Gupta and Gupta [2] investigated heat and mass transfer on a 
stretching sheet with suction or blowing. In their work, the authors considered the isothermal moving plate and 
obtained the temperature and concentration distributions.  

Merkin [3] in his work showed that wall to ambient temperature distributions can be presented by four common heating 
processes, namely, (i) constant or prescribed surface temperature; (ii) constant or prescribed surface heat flux; (iii) 
Newtonian heating; and (iv) conjugate boundary conditions. When the heat transfer from the bounding surface with a finite 
heat capacity is proportional to the local surface temperature, this heating process is called Newtonian heating which is 
usually termed conjugate convective flow.  The situation of Newtonian heating occurs in many engineering devices, such as 
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in heat exchanger where the solid tube wall is greatly influenced by the convection in fluid flowing over it (Chaudhary and 
Jain [4]). For conjugate heat transfer around fins where the conduction within the fin and the convection in the fluid 
surrounding it must be simultaneously analyzed in order to obtain the vital design information and also in convection flows 
set up by bounding surfaces absorb heat by solar radiation. Since the investigation made by Luikov et al. [5], many 
researches on the topic of conjugate parameter have been studied. Kimura et al.  [6] and Martynenko and Khramtsov [7] 
have provided  excellent reviews of the topic of conjugate problems in their books. 

Most of the studies done by previous researchers only dealt with flow driven  either by constant or prescribed surface 
temperature or prescribed surface heat flux, namely by Elbashbeshy [8], Hassanien et al. [9], Ishak et al. [10] and 
Elbashbeshy and Bazid [11]. However the Newtonian heating problem has been examined by Lesnic et al. [12] to study the 
free convection boundary layer along a vertical surface embedded in a porous medium. Salleh et al. [13, 14] investigated the 
forced convection boundary flow at a forward stagnation point with Newtonian heating as well as the boundary layer flow 
and heat transfer over a stretching sheet with Newtonian heating, respectively. Recently, Hayat et al. [15] addressed the 
effect of Newtonian heating on the boundary layer flow and heat transfer in the second grade fluid. The homotopy analysis 
method (HAM) has been used in their work to obtain semi-analytical solutions. 

 The objective of the present study is to investigate the problem of heat transfer over a stretching sheet with Newtonian 
heating (NH) and to see the effect of various values of Prandtl number and conjugate parameter  which measures the 
strength of surface heating. The analysis for constant wall temperature (CWT) and constant heat flux (CHF) is also included 
in this paper for comparison purposes. The governing nonlinear equations are reduced into ordinary differential equations 
using the similarity transformation and they are then solved numerically using the Keller-box method, an implicit finite-
difference scheme.  

2. Governing Equation 

We consider the steady laminar boundary layer flow of a viscous and incompressible fluid over a stretching sheet. The 
continuity, momentum and energy equations describing the flow can be written as 
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where x and y are taken as the coordinates parallel to the plate and normal to it, and u and v are the velocity components 
along the x and y directions, respectively. The associated boundary conditions are expressed as  
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where T is the fluid temperature, T  is the ambient temperature, hs is the heat transfer parameter for Newtonian heating,  
is the kinematic viscosity and  is the thermal diffusivity. The continuity equation is satisfied if we choose a stream 
function  such that 
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Introducing the similarity transformation 
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Equations (2) and (3) can be written as 
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with boundary conditions (4) become 
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along with the two cases 
 

(0) 1 (CWT) and (0) 1 (CHF)                                                              (10) 
 
where 21)/(sh  is the conjugate parameter for Newtonian heating and Pr is the Prandtl number. When 0 , an 
insulated wall is present and when , the wall temperature remains constant. 

3. The Keller Box Method 

Equations (7) and (8) subject to boundary conditions (9) are solved numerically using the Keller box method as 
described in the books by Na [16] and Cebeci and Bradshaw [17]. 

 

3.1. The Finite Difference Scheme 

This paper discusses the implicit finite-difference scheme on boundary layer flow over a stretching sheet with Newtonian 
heating boundary condition. We start with introducing new independent variables 
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Fig. 1. Net Rectangle for Difference Approximation. 

 
 

We now consider the net rectangle in the x-  plane shown in Figure 1 and the net points defined as below: 
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where nk  is the x spacing and jh  is the spacing. Here n and j are just the sequences of numbers that indicate the 
coordinate location.  
The derivatives in the x- direction are replaced by finite difference, for example the finite difference form any points are 
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We start writing the finite-difference form of equation for the midpoint ),( 21j
nx  of the segment P1P2 using centered-

difference derivatives. This process is called centering about " ),( 21j
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where 
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We note that 

2
11 jR  and 

2
12 jR  involve only known quantities if we assume that the solution is known on 1nxx . In 

terms of the new dependent variables, the boundary conditions become 
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Equations (13) are imposed for j=1, 2,...,J and the transformed boundary layer thickness, j , is sufficiently large so that 

it is beyond the edge of the boundary layer (Keller and Cebeci [18]). The boundary conditions yield at nxx are 
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To complete the system (18) we recall the boundary conditions (16) which can be satisfied exactly with no iteration. 
Therefore, in order to maintain these correct values in all the iterates, we take 
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To solve Equation (21), we assume that A is nonsingular and it can be factored into 
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where I  is the matrix of order 5 and i and i  are 55 matrices which elements are determined by the following 
equations: 
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Equation (27) can now be substituted into Equation (21) and we get 
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and the ,jW are 15  column matrices. The elements W can be solved from Equation (34) 
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The step in which j , j  and jW  are calculated is usually referred to as the forward sweep. Once the element of W are 
found, Equation (33) then gives the solution  in the so-called backward sweep, in which the elements are obtained by the 
following relations: 
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 These calculations are repeated until some convergence criterion is satisfied and calculations are stopped when 
 

1
)(

0
iv                                                                                              (39) 

where 1  is small prescribed value. 

4. Result and Discussion 

Equations (7) and (8) subject to boundary conditions (9) are solved numerically by an implicit finite-difference scheme, 
namely the Keller box method. Matlab software was used to programme and generate the numerical solution of the 
boundary value problem. The step size used in this study is 0.02  with various Prandtl number and conjugate 
parameters are being considered. 

 In order to validate the numerical results obtained, we first compare the present results with the results obtained by 
Hassanien et al. [9] and Elbashbeshy [8] for the case of CWT and CHF, respectively. The values of the heat transfer 
coefficient - (0)  and surface temperature (0)  from Equations (7) and (8) are presented in Table 1 and it is found that the 
agreement is very good.  
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 Table 2 shows the values of (0)  and (0)  for various values of Pr when 1 for the case of Newtonian heating. 
We observe that both (0)  and (0) decrease as Pr increases. The trend for NH case is similar to the CHF but different 
for the CWT case.  

 
Table 1. Comparison Between The Current Solution Of Equations (7) and (8) With Previously Published Results For Different Boundary Conditions 

(CWT) and (CHF) 
 
 

Pr 
(0)  (CWT) (0)   (CHF) 

Hassanien et al. 
[9] 

Current 
Solution 

Elbashbeshy 
[8] 

Current 
Solution 

3 1.16525 1.16525  0.85995 
5  1.56805  0.63852 
7  1.89540  0.52805 

10 2.30801 2.30800 0.43341 0.43352 
100 7.74925 7.76565  0.12852 

 
 
 

Table 2. Values of  (0)   and (0)  from equations (7) and (8) for various value Of PR when 1  (NH) 

 

Pr (0)  (0)  

3 6.04385 7.04385 

5 1.76005 2.76005 

7 1.11816 2.11816 

10 0.76507 1.76507 

100 0.14757 1.14757 

 
 

Table 3 presents the various values of   with fixed 10Pr . It can be seen from this table that as  increases, both )0(   
and (0)  is also increases.   

Table 4 presents the values of (0)  and (0)   for various values of Pr when 0.5  and 2. From this table, we 
noticed that as Pr increases, both (0)  and  (0)  decrease.  

 
 

Table  4. Values of (0)  and (0)  for various values of  Pr  when  0.5  and 2 (NH) 

 

Pr 
0.5  2  

(0)  (0)  (0)  (0)  

3 0.75149 0.87575 - - 
5 0.46815 0.73407 - - 
7 0.35835 0.67917 - - 

10 0.27658 0.63829 6.50263 14.971733 
100 0.06875 0.53437 0.34690 2.692733 

 
 

Figure 2 illustrates the variation of wall temperature (0)  with Prandtl number Pr when 0.5,1 and   2.0 . To 
achieve an acceptable solution, Pr must be greater than some critical value, say Prc, depending on . As Pr approaches the 
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critical value, )0(  becomes large and the value of  Pr 0.8535, 2.331 and 4.851c  when 0.5, 1 and 2, respectively.  

 
 

Fig.  2.  Variations of the (0) when 0.5, 1.0 and 1.5  
 

 
 

Fig.  3.  Variations of the wall temperature (0) when Pr 1, 3 and 7
 

 
Variations of wall temperature (0)  for different values of  when Pr 1, 3 and 7  are shown in Fig. 3. Also in this 

case, to get an acceptable solution,  must be less than some critical value, say c  depending on Pr. From the graph above, 
the critical value of c  is 0.5833 when Pr=1, 1.1547 when Pr=3, and 1.8750 when Pr=7. Fig. 4 presents the temperature 
profiles for various values of  when Pr 10  The thermal boundary layer thickness decreases with the increasing of  .  

The temperature profiles with various values of Pr when 0.5  are presented in Figure 5. It is found that as Pr 
increases, the temperature profiles decrease. It is also shown from these figures that the thermal boundary layer thickness 
increases sharply with a decrease in Pr. This is because for small values of the Prandtl number, the fluid is highly 
conductive. Physically, if Pr increases, the thermal diffusivity decreases and this phenomenon lead to the decreasing of 
energy transfer ability that reduces the thermal boundary layer. 

 
Fig.  4.  Temperature profile  for various values of conjugate parameter  when Pr 10  
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 Fig.  5.  Temperature profiles ( )  for various values of Pr when 0.5  

5. Conclusions 

In this paper we have numerically studied the problem of the boundary layer flow and heat transfer over a stretching 
sheet with Newtonian heating. The numerical solution is obtained using the Keller box method. It is shown in this paper 
how the Prandtl number Pr and the conjugate paramater   affect the wall temperature 0  and the heat transfer 
coefficient 0 . We can summarize that the thermal boundary layer thickness depends strongly on the Prandtl number 
and the conjugate parameter. It is found that an increase in Pr results in a decrease of the temperature profiles. However, the 
temperature profiles decrease by increasing conjugate parameter .  
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