
1

FACULTY OF ELECTRIC AND ELECTRONICS ENGINEERING

TECHNOLOGY

BHE3233

DIGITAL SYSTEM DESIGN

SEM 2 2024/2025

PROJECT: DICE GAME CONTROLLER

DR. NURUL HAZLINA BINTI NOORDIN

STUDENT ID NAMA

HC22023 IKRAM UMAR AZRA’I BIN TARMIZI

HC22004 CHUN KEAT A/L ELEK

2

Table of Contents
1.0 Project Background and Objective .. 3

2.0 Block and Workflow Diagram ... 4

2.1 Block Diagram Description ... 4

2.2 Workflow Diagram Description ... 5

3.0 Design Methodology .. 6

3.1 Finite State Machine (FSM) states ... 6

3.2 Datapath Description ... 7

3.3 Modules Used .. 8

4.0 Verilog Code Highlight .. 10

4.1 FSM Design in dice_controller .. 10

4.2 Pseudo-random Dice Value Generation ... 11

4.3 Random Number Generation: LSFR vs Internal Counter .. 12

5.0 Simulation Results ... 14

5.1 Testbench Logic ... 14

5.2 Output Waveform ... 15

6.0 FPGA Implementation ... 16

6.1 I/O Assignments ... 16

6.2 RTL Viewer Screenshot ... 17

7.0 Performance Evaluation ... 18

7.1 Performance Table ... 18

7.2 Performance and Complexity .. 19

8.0 Hardware Testing Implementation ... 20

9.0 Conclusion and Reflection ... 20

10.0 References .. 21

3

1.0 Project Background and Objective

Project Background

Project Title: Dice Game Controller

This project is focusing on designing a digital dice controller for two players who take turn to

roll the dice and the highest number (score) will be nominate as winner. This system enables

the players to take turns rolling a virtual dice using switches controls and to ensure liability of

the dice, the number is generated using Linear Feedback Shift Register (LSFR) and displayed

on a 7-Segment display. The project aims to simulate traditional dice gameplay through field-

programmable gate array (FPGA).

Players interact with the dice game using simple physical controls, which are:

• A power switch to turn on and off the system

• A roll switch to simulate the dice roll and stop the counting

• A reset button to clear the current state to start a new round

Objective

 As mention before the primary objective of this project is to develop a hardware-based dice

game controller by using Verilog HDL to be implemented in an FPGA system. The system

design is intended to simulate a rolling of a 6-sided dice as realistic as possible and showing

the virtual output on 7-Segment display.

Other objectives included:

• Implement a pseudo-random number generator using Linear Feedback Shift Register

(LSFR) to simulate the randomness of the dice rolling.

• Design a Finite State Machine (FSM) in order to manage the game flow such as rolling

logic, timing and reset functionality.

• Test the liability of the system through simulation (ModelSim Altera) thus validate the

design on actual FPGA board.

• Simulating fair and repeatable dice rolls, allowing multiple players to take turns using

the same controller.

4

2.0 Block and Workflow Diagram

2.1 Block Diagram Description

The Dice Game Controller consists of several key blocks working in order to implement the

digital dice mechanism. The system operates based on user inputs, logic control and a display

for the output. The system acts as follows:

• Power Switch

Act as the main controller to activate or deactivate the system. It enables the system to

become responsive to the user input.

• Roll Switch

Triggers the dice rolling mechanism when input high (Switch ON). It sends signal to

Control Unit to enter the dice rolling state.

• Control Unit

Manages the game logic, this included the state transitions from fix value to rolling and

stop. It also controls the speed of the Random Number Generator through timing

functions

• Random Number Generator

By implementing the Linear Feedback Register (LSFR) to produce pseudo-random

values from 1 to 6. This helps to simulate the dice rolling properties.

• Stop Switch

Determine when the rolling animation should stop.

• 7-Segment Display

Displays the final dice value once the rolling of the dice is complete. The dice value

will be updated in real time and fix once stopped

• Reset Switch

Restart the system again to the rolling point for a new round

Figure 1 : Block Diagram representation

Power Switch Roll Switch
Control Unit

(FSM)

Random

Number

Generator

7-Segment

Display
Reset Switch Stop Switch

5

2.2 Workflow Diagram Description

The workflow diagram shows the sequence of operation from powering the FPGA to rolling

and displaying the dice value. It also represents the visual implementation in the Verilog code.

The operational flow is as follows:

Figure 2 : Workflow Diagram representation

Note: P1 is Player 1, P2 is Player 2

Display dice value on 7-

Segment display

Reset

?

Counting 1-6

randomly

A

Roll

dice?

(P2)

Yes

Stop?
No

Yes

No

Yes

C

B
No

B

Power ON

Reset

?

Counting 1-6

randomly

Stop?

Display dice value on 7-

Segment display

Roll

dice?

(P1)

Display ‘0’

Yes

Yes

Yes

No

No

No

A C

6

3.0 Design Methodology

3.1 Finite State Machine (FSM) states

The dice game uses Moore FSM to control the logic flow of the system as its output depends

only on the current state, not directly on the input. This is because the dice value is updated

based on the timing edge which affect the output instead of directly by input value. No output

is updated instantly when receiving input of the system. Moore is also chosen as it is simple to

design and debug.

The system includes the following states, the output in the diagram represents in decimal value:

1

1
0

0
1

1

0

0

0

Initial

state

[0]

Rolling

[random

1-6]

Start

[0]

Buffer

[random

1-6]

Result

[final

value]

Reset

[0]

0

1

1

Figure 3 : Moore’s FSM representation

7

3.2 Datapath Description

The first part of the data is the Player Dice Controller Block, where it consists of registers and

control logic for single player to perform dice rolling:

• Programmer Visible Registers: Internal Counter, Counter, Buffer Counter, Dice

Value

• Control Logic: FSM Control, where it functions through inputs (CLK, POWER,

RESET, ROLL)

• Functional Unit: ALU calculate and process the counter used in the program to get

the dice value

• Output unit: 7-Segment Decoder to display the dice value

The second part is the Comparing Logic Block to perform comparison between Player 1 and

Player 2 dice results, for this part it consists of:

• Inputs: Dice Value from Player 1 and Player 2 from Dice Controller Block.

• Functional Unit: Compare Logic using simple combinational comparator logic to

determines which player rolled higher number or if the results is a draw.

• Output Functional Unit: 7-Segment Decoder to display the winner (Player 1 as “1”,

Player 2 as “2” or Draw as “0”)

Input

CLK

POWER

RESET

ROLL

FSM Control

(rolling, buffering)

Linear

Feedback

Shift Register

(LSFR)

Counter

Buffer

Counter

Dice Value

 ALU

 Decoder

(7-Segment)

Register

Player Dice Controller Block

Player 1 Dice

Controller Block

Player 2 Dice

Controller Block

Comparing Logic Decoder

(7-Segment)

8

3.3 Modules Used

For this project, the module is separate into two different modules in order to make the system

easier to manage and debugging.

I. dice_controller module

The module implements the logic from a single player’s dice rolling process. In this part, the

module has been included with a simple Finite State Machine (FSM) with two main states

which are the rolling and buffering. The rolling state is activated when the player turns on the

Roll Switch, triggering the dice to display a changing dice value at a fixed rate. When the player

turns off the switch, the controller will enter a buffering state, which is a short delay before the

animation is stopped. The module uses internal registers for its operation:

• Internal Counter: Continuously increments to provide a dynamic value for dice

generation

• Counter and Buffer Counter: Manage timing for animation updates and buffering

delay

• Dice Value: Holds the current dice number (1 to 6)

The dice value is being calculated using modulo operation to ensure a valid range. This module

also receives inputs of clock (clk) power, reset and roll trigger.

Figure 4: dice_controller module overview

9

II. fpga_dice module

The fpga_dice module serves as the top-level integration or top-level hierarchy for this project.

It differentiates two independent dice_controller modules, one for Player 1 and the other is

for Player 2 to allow both players to roll their own dice independently. Each player’s dice value

will be display on two separate 7-Segment displays.

For further improving the game experience, this module also contains Comparing Logic to

determine the winner and output the result (“1” for Player 1, “2” for Player 2, “0” is it a draw)

on a third 7-Segment display. The module handles the input from user or the FPGA board which

are switches (SW) and connects output to the display (HEX0, HEX2, and HEX5).

Figure 5: fpga_dice module overview

10

4.0 Verilog Code Highlight

4.1 FSM Design in dice_controller

The dice_controller module uses a simple Finite State Machine (FSM) implemented with two

internal flags which are “rolling” and “buffering”. The FSM controls the behaviour how the

dice will roll. We can see this part on different line from the coding such as:

• The FSM starts as inactive state after Power Switch is turn on

 Figure 6

• When the player wants to roll their dice, the Roll Switch is turn on, then FSM enters

the rolling state, where the dice values will being update periodically based on the

(counter) to imitate real dice.

Figure 7

• When the Roll Switch is turn off, the FRM transitions to the buffering state introducing

a delay using “buffer_counter”

Figure 8

• After the buffering period ends, the FSM returns to the inactive state (Figure 6) if the

player turns on the Reset Switch.

FSM control is used in the main function “always @(posedge clk0)” to ensure the logic inside

is only triggered on the rising edge of the clock, when the clock changes from 0 to 1.

11

4.2 Pseudo-random Dice Value Generation

To imitate the real-life dice behaviour, the dice value is generated using a pseudo-random

method that updates the number as it in rolling and buffering states of the FSM. The target is

to produce a dice number between 1-6 that appear random on the display.

Figure 9: LSFR Circuit

Thus, the number is being generated using a 4-bit Linear Feedback Shift Register (LSFR). The

LSFR is a simple circuit that generates a sequence of binary values by using a XOR gate as the

based making the number to be appeared random. In this design, the same principle is applied

by applying an XOR operation between certain bits of the register.

Figure 10

At each clock cycle during the rolling process, the bits of LSFR are shifted to the right, and the

new MSB bit is determined by XOR bit 2 and bit 3 of the previous state. This creates a repeating

but an almost random sequence of 4-bit values.

To control the limit of the 4-bit values to be in between 1 to 6, the LSFR will be through a

modulo arithmetic.

Figure 11

12

4.3 Random Number Generation: LSFR vs Internal Counter

I. Linear Feedback Shift Register

As has been mentioned before from Section 4.2, the dice value was generated using a 4-bit

Linear Feedback Shift Register (LSFR). This system however has some problem which caused

the sequence value to be only appear 2,3, and 6 only, which is not as a real-life dice rolling

state.

This is cause by the fact that initial value of LSFR has been set to 4’b1011 and the concept of

XOR and shifted right causing some numbers are impossible to be produce. The sequence of

the LSFR can be shown as:

LSFR sequence (Shifted right

flow)

Modulo arithmetic Output (7-Segment display)

1011 (11 % 6) + 1 = (5) + 1 = 6 6

1101 (13 % 6) + 1 = (1) + 1 = 2 2

1110 (14 % 6) + 1 = (2) + 1 = 3 3

0111 (7 % 6) + 1 = (1) + 1 = 2 2

Table 1

As can be seen from the table the number sequence will only have 2,3, and 6 on the display,

making the dice controller game’s experience is not as real-life like.

II. Internal Counter

To further improve this random number sequence, an improved version of the previous design

(LSFR) has been replaced with a 32-bit internal counter that will runs continuously and

increments on every clock cycle.

The internal counter is defined as 32-bit to ensure it can run for a long time before return back

to bit 1 to avoid overflowing. As the typical FPGA frequency is 50Mhz, this will be divided by

total bit or total toggles cycle of the bit (2𝑛), helping generator to reset toggle at longer period

since it has lower frequency. It can be represented by:

50 𝑀𝐻𝑧

232
= 0.012 𝐻𝑧

This made the bit will be reset after 30.52 µs (𝑝𝑒𝑟𝑖𝑜𝑑 =
1

𝑓
) ensuring there is no overflow and

the FPGA can process the input bit accurately. But for this random number we using only bit

13 until bit 15, since the number 6 is 3’b110, and these bits are changing slow enough for

human eyes to see the changing of the dice value and better game feel. The frequency of which

this bit occur can be represented:

Bit number (n) Toggles every (2𝑛) Frequency(
50 𝑀𝐻𝑧

2𝑛)

13 8192 cycles 6.1 kHz

14 16384 cycles 3.0 kHz

15 32768 cycles 1.5 kHz
Table 2

13

The bit used (bit 13 to bit 15) has be defined in the modulo coding (Figure 12) and this internal

counter will count from the initial value define in the coding (Figure 13) until 7 due to possible

maximum combination of 3b’111 like a usual counter process, but this has been limited to 6

using modulo arithmetic:

Internal counter [15:13] Modulo arithmetic Output (7-Segment display)

000 (0 % 6) + 1 = 1 1

001 (1 % 6) + 1 = 2 2

010 (2 % 6) + 1 = 3 3

011 (3 % 6) + 1 = 4 4

100 (4 % 6) + 1 = 5 5

101 (5 % 6) + 1 = 6 6

110 (6 % 6) + 1 = 1 1

111 (7 % 6) + 1 = 2 2

Table 3

Figure 12

Figure 13

From this result, it can be seen that by using internal counter as the register instead of LSFR is

much more accurate and dice-like behaviour, which is more suitable for the user experience

and the project objective. Thus, in this version of design internal counter method will be used

instead of LSFR as the FSM.

14

5.0 Simulation Results

5.1 Testbench Logic

The testbench for this project is designed as test_dice to verify the functionality of the internal

counter function in dice_controller module using ModelSim Altera for the simulation. It

generates a 100MHz clock (Figure 14) and provides inputs for power, reset, and roll signals

(Figure 15).

Figure 14

Figure 15

The roll button is held high for 100µs to simulate a rolling action and then released to test the

buffering state, to update the dice value several times like how player will be using the dice

game controller. This allows verification of both rolling and buffering transitions in the FSM.

The timing is control by:

Figure 16

However, a second version of the module from dice_controller need to be edit and named as

dice_controller_simu to allow the dice value to update faster within the short simulation time,

making the output waveform easier to analyse. The modified version uses lower bits of the

internal counter and also the BUFFER_LIMIT is also reduced to speed up the buffering

phase in the simulation. The edited part can be seen as:

Figure 17

Figure 18

The rolling time from the previous module is also being removed in order for the dice value to

be shown on every clock cycle, which help with the simulation purposes.

15

5.2 Output Waveform

Figure 19

Figure 19 is the simulation output waveform has confirmed correct behaviour of the dice

controller module. As can be seen from the graph in ModelSim:

• The top signal (clk) is a 100Mhz clock, generated by the testbench

• The power signal is active high showing the power is turn on, and reset is held low

since we do not use this switch yet.

• The roll signal is always high during the rolling phase (100µs), allowing the dice value

to update.

• The signal dice_value displays a sequence of valid dice numbers from 1 to 6,

represented as a 3-bit binary value

In the waveform:

• At time around 6500 ns to 7000 ns, roll is set as high and dice_value is being update

every clock cycle, moving from values 3’b010 (d’2), 3’b011 (d’3), 3’b100 (d’4), 3’b101

(d’5), 3’b110 (d’6), then back to 3’b001 (d’1).

• The 7-Segment output also (seg) updates correctly for each dice_value, showing the

expected segment pattern for each dice face.

• The transitions can be seen as smooth and continuous during roll high input, validate

the FSM and internal counter are functioning properly.

This confirms that the dice_value generator and FSM control logic are correct, and the 7-

Segment display is responding as intended.

16

6.0 FPGA Implementation

6.1 I/O Assignments

For FPGA hardware implementation on the DE10-Lite board, the pin used for this project has

been defined in test_dice module with the specific name of the pin, allowing Quartus to

automatically assign the corresponding pins based on the DE10-Lite board

Signal FPGA Pin / Board Mapping

clk MAX10_CLK1_50 (50 MHz onboard clock)

power SW[0] (on-board slide switch)

reset SW[9] (on-board slide switch)

roll KEY[0] or KEY[1] (pushbutton)

seg HEX0 or HEX2 (7-segment display)

Table 4

This simplifies the process of pin assignment and ensure correct mapping between the design

and the physical FPGA pins. The coding meant can be seen in Figure 20.

Figure 20

The I/O pin assignment also can be verified in the pin planner as in Figure 21. This further

confirms that the pin definitions set in the fpga_dice module has link necessary pin correctly.

Figure 21

17

6.2 RTL Viewer Screenshot

Figure 22

In the RTL diagram it can be seen:

• The design consists mainly of FSM control logic, internal counters, and a simple 7-

Segment decoder at the end.

• Registers are used to hold the internal counter, buffer counter, and the dice value

• Combinational logic handles the modulo arithmetic and segment decoding

The RTL diagram shows a relatively simple design, but it consists of many same type

components although it is not too complex of a design.

18

7.0 Performance Evaluation

7.1 Performance Table

Parameter Value

Logic utilization (%) < 1 %

Total combinational functions 108

Register count 73

Maximum clock frequency 275.25 MHz

Critical path 3.665 ns

Table 5

The result indicates the dice controller design is very lightweight in terms of logic utilization,

making it suitable for a small FPGA such as MAX10 family, the hardware being used for this

project.

Figure 23

108 combinational functions and 73 dedicated registers are used, saving plenty of resources

available for future improvements or additional features.

Figure 24

The timing results show that the design can operate at a maximum frequency of 272.5MHz

higher than 50MHz clock used in this project, indicate the design can run safely without timing

violations.

Figure 25

19

The critical path delay of 3.665 ns is very short, confirming that the FSM and combinational

logic are simple and efficient.

Figure 26

7.2 Performance and Complexity

From the performance table (Table 5) it shows that the dice_controller module was designed

to be simple and efficient, prioritizing reliable functionality and low resource utilization rather

than complex features. The FSM consists of only a few states (idle, rolling, buffering), and the

random number generation uses a straightforward internal counter, which keeps the logic small

and fast.

One trade-off is that using an internal counter for random number generation is simple, but

does not provide true randomness. However, this is acceptable for this project, where the goal

is to simulate a user-friendly rolling dice, rather than generate a random number. However, but

using the buffer time in the module, it replicates the randomness, since although player stops

the number, the buffer will stop it at further sequence giving an almost random dice value

Another trade-off is that the design does not use complex features such as pipelining, advanced

arithmetic, or dynamic clock scaling due to the fact that the required performance is easily met

with simple combinational logic and counters. This approach results in a very small logic

footprint (<1% utilization) and high Fmax (275.25 MHz), far exceeding the system clock,

making it a robust and reliable implementation suitable for low-cost FPGA platforms.

Overall, the design achieves a good balance between performance, resource usage, and design

simplicity, making it easy to verify, maintain, and scale if additional features are desired in the

future.

20

8.0 Hardware Testing Implementation

The demonstration video of the hardware testing can be found at the link below:

• https://youtu.be/d24OxNyF8ho

In the first part of the video, the FPGA runs the version using LSFR (Linear Feedback Shift

Register) as the FSM for random number generation.

In the second part, the improved version using internal counter as the FSM is shown.

Additionally, the input method is also changed from a simple switch input to a push button

input, improving the user experience and making the dice game feel more interactive.

9.0 Conclusion and Reflection

In summary, this project successfully achieved the objective of designing and implementing a

hardware-based dice game controller using Verilog HDL on the DE10-Lite FPGA board.

Through the development process, the system has been improved from an initial LFSR-based

design to a finer version of FSM using an internal counter for pseudo-random number

generation, which provided more accurate and realistic dice behaviour. The FSM control and

buffering mechanism further enhanced the user experience by simulating the rolling and

stopping of the dice, similar to a physical game.

Simulation results validated the liability of the FSM and number generation, while the FPGA

implementation demonstrated low resource utilization (<1%), high operating frequency

(275.25 MHz), and reliable operation on actual hardware.

Throughout the project, our group gained practical experience in:

• Designing finite state machines (FSM)

• Implementing and optimizing random number generators

• Verifying designs using ModelSim simulation

• Managing timing and resource constraints in FPGA

• Testing and debugging hardware implementations

This project also highlighted the trade-offs between design complexity and performance,

showing that a simple, well-optimized solution can be very effective for this type of application.

The final hardware demonstration showed that the dice controller performs as intended,

providing an interactive and user-friendly experience. This project has helped strengthen my

understanding of digital system design, FPGA implementation, and HDL-based development.

https://youtu.be/d24OxNyF8ho

21

10.0 References

• Intel Quartus Prime Software User Guide, available at: https://www.intel.com

• Intel MAX10 FPGA Device Handbook, available at: https://www.intel.com

• ModelSim-Altera User Manual, available at: https://www.intel.com

• Verilog HDL IEEE Standard 1364, freely available summary at:

https://standards.ieee.org

• Pong P. Chu, FPGA Prototyping by Verilog Examples, 3rd Edition, Wiley (example

code and support: https://github.com/chu-fpgabook)

• Enes Çangür, "Linear Feedback Shift Register" [GitHub repository], available at:

https://github.com/enescang/linear-feedback-shift-register

• OpenCores Project Repository -Open Source IP Cores, available at:

https://opencores.org

• ASIC-World Verilog Tutorials, available at: https://www.asic-

world.com/verilog/veritut.html

• Digital System Design Tutorials, OpenFPGA project — https://openfpga.org

• FPGA4Student, "Verilog Microcontroller Code Example", available at:

https://www.fpga4student.com/2016/11/verilog-microcontroller-code.html

https://www.intel.com/
https://www.intel.com/
https://www.intel.com/
https://standards.ieee.org/
https://github.com/chu-fpgabook
https://github.com/enescang/linear-feedback-shift-register
https://opencores.org/
https://openfpga.org/
https://www.fpga4student.com/2016/11/verilog-microcontroller-code.html

