Optical and Electrochemical Properties of \(\text{Co}_3\text{O}_4/\text{SiO}_2 \) Nanocomposite

GOMAA A. M. Ali\(^1,2,a\), OSAMA A. Fouad\(^3,b\), SALAH A. Makhlfou\(^4,5,c\), MASHITAH M. Yusoff\(^4,d\), KWOK Feng Chong\(^1,e\)

\(^1\) Faculty of Industrial Science and Technology, University Malaysia Pahang (UMP), 26300, Kuantan, Pahang, Malaysia
\(^2\) Chemistry Department, Faculty of Science, Al–Azhar University, Assiut branch, Assiut 71524, Egypt
\(^3\) Central Metallurgical Research and Development Institute, CMRDI, P.O. Box 87, Helwan 11421, Egypt
\(^4\) Physics Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
\(^5\) Deanship of Scientific Research, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11463, Saudi Arabia

\(^a\) gomaasanad@azhar.edu.eg, \(^b\) oafouad@yahoo.com, \(^c\) smakhlfou@gmail.com, \(^d\) mashitah@ump.edu.my, \(^e\) cfkeng@ump.edu.my

Keywords: \(\text{Co}_3\text{O}_4/\text{SiO}_2 \), nanocomposites, citrate–gel, optical, pseudocapacitance

Abstract. \(\text{Co}_3\text{O}_4/\text{SiO}_2 \) nanocomposite was obtained via citrate–gel method. 22 nm in size of \(\text{Co}_3\text{O}_4 \) particles in an amorphous \(\text{SiO}_2 \) matrix were obtained. \(\text{Co}_3\text{O}_4/\text{SiO}_2 \) wt. ratio was verified using EDX and found to be close to the 80 % nominal ratio. The UV–Vis measurement showed broad absorption bands at around 440 and 790 nm. The optical band gap values were 1.95 and 1.35 eV respectively, being close to those observed for pure \(\text{Co}_3\text{O}_4 \) nanoparticles. The electrochemical measurements in 5 M KOH solution were performed using a three–electrode type system. \(\text{Co}_3\text{O}_4/\text{SiO}_2 \) nanocomposite exhibited high specific capacitance reaching 758 Fg\(^{-1}\) at 2.5 mVs\(^{-1}\). Very small solution and electrode–electrolyte interfacial charge transfer resistances were obtained when impedance spectra were analysed.

Introduction

Pseudocapacitors possess high capacitances because they can store charge via electron transfer reactions that produce chemical or oxidation state changes in these electroactive materials. On the other hand, electro double layer capacitors (EDLCs) store charge in its electrical double layer due to electrostatic charge separation between electrolyte ions and electrodes [1]. Transition metal oxides (TMO) having different oxidation states are suitable candidates for pseudocapacitance applications. TMO such as \(\text{MnO}_2 \), \(\text{NiO} \), \(\text{CuO} \), \(\text{Fe}_2\text{O}_3 \) and \(\text{Co}_3\text{O}_4 \) [2–5] are particularly favored for supercapacitance applications due to their cost reduction over noble metal oxides such as \(\text{RuO}_2 \). Among all TMO, \(\text{Co}_3\text{O}_4 \) is a promising electrode material for pseudocapacitance applications due to its environmental friendliness, easy preparation, very high theoretical specific capacitance (3560 Fg\(^{-1}\)), high surface area, good redox, easily tunable surface and structural properties [6]. Many methods have been reported for preparation of \(\text{Co}_3\text{O}_4 \) such as template–free growth method, facile homogeneous precipitation process under hydrothermal conditions and chemical deposition [4, 7, 8]. Coating nanoparticles with \(\text{SiO}_2 \) was found to enhance their specific capacitance and energy density, improving their electrochemical capacitance properties [9]. \(\text{Co}_3\text{O}_4/\text{SiO}_2 \) nanocomposites have been prepared by different methods such as sol–gel, citrate–gel, facile solvothermal route and chemical vapor deposition, showing a porous structure and rather narrow size distribution of highly dispersed \(\text{Co}_3\text{O}_4 \) [5, 10–14].

In this work \(\text{Co}_3\text{O}_4/\text{SiO}_2 \) nanocomposite has been prepared by citrate–gel method and was characterized by X–ray diffraction (XRD), Fourier Transform Infra–Red (FTIR) and Energy Dispersive X–ray (EDX) techniques. The optical band gaps have been calculated from UV–Vis absorption data. The electrochemical properties have been tested, analyzed and discussed in view of morphological and structural properties of the prepared nanocomposite.
Experimental

Co$_3$O$_3$/SiO$_2$ nanocomposite has been synthesized via citrate–gel method. The cobalt chloride, TEOS, and citric acid were dissolved in absolute ethanol. The three solutions were dispersed ultrasonically for 30 minutes. The method is mainly similar to that described in our recent published work [5, 12]. Here, Co$_3$O$_3$/SiO$_2$ nominal weight ratio was 80 wt. %, and was verified by EDX analysis to be 82 %. Phase identification, purity, crystallinity and crystallite size of the product were studied using a Philips PW1700 diffractometer using Cu–K$_\alpha$ radiation ($\lambda = 0.15418$ nm) and a graphite monochromator in the 2θ range from 10 to 80°. The optical absorption spectra were measured in the wavelength range of 200–900 nm using a spectrophotometer UV–VIS Lambda 750. Measurements were made for a suspended solution of about 1 mg in 10 ml absolute ethanol in a special quartz cell. Infrared spectra were measured in the range 4000–400 cm$^{-1}$ using an FTIR spectrometer (JASCO–480 Plus, Japan). The electrode preparation and electrochemical testing were explained in details elsewhere [5].

Results and Discussion

Crystal structure and phase analysis. Fig. 1 shows the XRD pattern for Co$_3$O$_4$/SiO$_2$ sample. All diffraction peaks were assigned to Co$_3$O$_4$ phase (ICDD card # 00–009–0418), indicating the formation of a pure crystalline Co$_3$O$_4$ particles in an amorphous SiO$_2$ matrix. The apparent crystallite size (P_3) of the Co$_3$O$_4$ particles was estimated by the Scherrer’s formula to be 22 nm, with a lattice constant (a) of 0.811 nm and a unit cell volume (V) of 0.533 nm3.

![Fig. 1: XRD pattern of Co$_3$O$_4$/SiO$_2$.](image)

FTIR and UV–Vis spectra. Further information about the chemical structure was obtained from FTIR data presented in Fig. 2(a). The bands at 460 and 1090 cm$^{-1}$ can be assigned to the asymmetric stretching vibration of the bond Si–O–Si in the SiO$_4$ tetrahedron [8]. The weak intensity band at 840 cm$^{-1}$ was attributed to stretching of non–bridging oxygen atoms in Si–OH bond [10]. The absorption band at 660 cm$^{-1}$ related to the vibrations of Co(III)–O bonds in Co$_3$O$_4$ is observed. This band was assigned to the Co–O stretching in Si–O–Co network. The band at 560 cm$^{-1}$ that was also associated with the Co–O stretching is found [10]. Fig. 2(b) shows the optical absorption spectrum of Co$_3$O$_4$/SiO$_2$ nanocomposite. It exhibits broad absorption bands at around 450 and 790 nm which characterise the ligand to metal transfer transition of (O$^{2-}$ → Co$^{3+}$) and (O$^{2-}$ → Co$^{4+}$), respectively. The absorption band gap (E_g) can be obtained using the following eq. \((\alpha h\nu)^n = \beta(h\nu - E_g)\) where, $h\nu$ is the photon energy, β is a constant relative to the material, E_g is the energy band gap, α is the absorption coefficient and the exponent n take different values depending on electronic transition types [11]. Extrapolation of the linear portions to zero absorption coefficients gives the values of the optical energy gaps as shown in the inset of Fig. 2 (b). The energy gaps were found to be 1.95 and 1.35 eV suggesting direct allowed transitions, being consistent with the Co$_3$O$_4$ band structure. The energy gap values for this nanocomposite are higher
than those obtained for the same samples with lower cobalt content [11], and were ascribed to the lower particle sizes of the latter [1]. Solar cells, electrochromic devices and optical gas sensors are among the potential applications of this material.

Cyclic voltammetry (CV) measurements. Fig. 3(a) presents the CV curves of Co$_3$O$_4$/SiO$_2$ nanocomposite in the potential range of 0 to 0.60 V at different scan rates, showing nonrectangular CV shapes similar to those reported for pure Co$_3$O$_4$ [4]. Oxidation and reduction peaks were observed and ascribed to oxidation and reduction of cobalt (II, III) species. The redox reaction that occurs can be illustrated by the following equations [7, 8]:

\[
\text{Co}_3\text{O}_4 + \text{OH}^- + \text{H}_2\text{O} = 3\text{CoOOH} + e^- \tag{1}
\]

\[
\text{CoOOH} + \text{OH}^- = \text{CoO}_2 + \text{H}_2\text{O} + e^- \tag{2}
\]

These electrochemical charge transfer reactions occurred within Co$_3$O$_4$ support its potential use for pseudocapacitance application [4, 8], indicating that the capacitance is mainly based on the redox mechanism. In addition, both anodic and cathodic peak potentials are slightly shifted to more anodic and cathodic directions on account for the polarization in the electrode material. The specific capacitance (C_s) was calculated by integrating the area under the CV curve [5]. The C_s was found to be 758 F g$^{-1}$ at 2.5 mVs$^{-1}$ and it decreases with increasing the scan rate (see Fig. 3(b)). The present C_s is higher than that reported for pure Co$_3$O$_4$ (742.5 F g$^{-1}$) [6]. The results can be understood in terms of the lower particles size and high dispersion of Co$_3$O$_4$ particles in SiO$_2$ matrix [10–12].

Galvanostatic charge–discharge (GCD). Fig. 4(a) shows the GCD curves for the nanocomposite at indicated discharge current densities. The nonlinearity in the discharge curves suggests pseudocapacitance behavior of Co$_3$O$_4$ resulting from the electrochemical adsorption–desorption or...
redox reaction at the electrode–electrolyte interface. The data show an almost neglected iR drop. C_s of the nanocomposite electrode was also calculated and found to be 623 and 460 F g$^{-1}$ at current densities of 0.5 and 1 A g$^{-1}$, respectively (see Fig. 4(b)). These results are much higher than those reported for Co$_3$O$_4$ nanowires (336 F g$^{-1}$ at 1 A g$^{-1}$) [1] and layered parallel folding structure of mesoporous Co$_3$O$_4$ (202.5 F g$^{-1}$ at 1 A g$^{-1}$) [8]. The higher values of C_s of the present sample result from the smaller crystallite size and more accessible surface sites.

Electrochemical impedance spectroscopy (EIS). EIS were collected to gain more information about capacitive behavior. Fig. 5 shows the Nyquist plot for Co$_3$O$_4$/SiO$_2$ nanocomposite, the inset is the expanded high frequency region. The equivalent circuit is composed of a solution resistor (R_s), an electrode–electrolyte interfacial charge transfer resistor (R_{ct}), a double layer capacitor (C_{dl}), a Warburg diffusion element (W), and a faradic pseudocapacitor (C_{ps}). C_{dl} and C_{ps} were found to be 0.27 and 19.76 mF, respectively. Very small R_s of 0.28 and R_{ct} of 0.57 Ω were obtained indicating good conductivity and consequently good electrochemical performance of this material.

Summary

Well crystalline and highly dispersed Co$_3$O$_4$ particles in an amorphous SiO$_2$ matrix were prepared successfully via citrate–gel method. The XRD particle size of Co$_3$O$_4$ was 22 nm. The optical band gaps obtained from UV–Vis measurements were 1.95 and 1.35 eV. Co$_3$O$_4$/SiO$_2$ nanocomposite shows high specific capacitances of 758 and 623 F g$^{-1}$ at a scan rate of 2.5 mV s$^{-1}$ and a current density of 0.5 A g$^{-1}$ in 5 M KOH, respectively. Impedance measurements show very small resistances indicating good electrochemical performance.
Acknowledgement

The funding from the Ministry of Education Malaysia in the form of MTUN–COE grant RDU121212 and RDU121213.

References

Optical and Electrochemical Properties of Co₃O₄/SiO₂ Nanocomposite

DOI References

