Electrochemical Properties of Electrodeposited MnO₂ Nanoparticles

Gomaa Abdelgawad Mohammed Ali ^{1, 2,a}, Mashitah Mohammed Yusoff ^{1,b}, Chong Kwok Feng ^{1,c*}

¹ Faculty of Industrial Sciences &Technology, Universiti Malaysia Pahang, 26300 Kuantan, Malaysia

² Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt ^agomaasanad@gmail.com, gomaasanad@azhar.edu.eg, ^bmashitah@ump.edu.my, ^cckfeng@ump.edu.my

Keywords: Electrodeposition, MnO₂, Electrochemical, Cyclic Voltammetry.

Abstract. The present study shows the electrodeposition of MnO_2 from $KMnO_2$ solution and its electrochemical studies. XRD analysis shows the electrodeposited MnO_2 has nano-sized particle of 18 nm. The electrochemical properties have been investigated using the cyclic voltammetry, galvanostatic charge/discharge and impedance techniques. The electrodeposited MnO_2 shows good electrochemical behavior with high specific capacitance value of ca. 306 F g⁻¹. Moreover, it shows high capacitance stability of 90% over 1000 charge/discharge cycles. Impedance result shows low solution resistance and charge transfer resistance, an indication of the conductive nature for the electrodeposited film.

Introduction

Different types of materials have been reported for supercapacitor applications including metal oxides, polymers, carbon and hybrid materials [1-4]. MnO₂ has an excellent capacitive performance in the aqueous electrolytes so it is widely used as electrode material for supercapacitor applications [5]. Many preparation methods had been proposed to prepare MnO₂ thin films such as spray pyrolysis, RF sputtering, sol gel, hydrothermal and electrodeposition [6-8] methods. Among of these methods, electrodeposition is simple and economical method to produce high quality MnO₂. Moreover, many manganese precursors can be used for electrodeposition process such as KMnO₄, Mn(CH₃COO)₂, Mn(NO₃)₂.4H₂O, MnSO₄ [5,9]. Different MnO₂ film morphologies were obtained such as nanoflakes, nanorods, nanosheets, nano-nests, nanowires, and nanopetals [8,9]. These morphologies render facile electrolyte penetration and better surface utilization of the active material for Faradaic reactions. In this paper, MnO₂ thin film was obtained from KMnO₄ solution by low cost, fast and environmental friendly chronopotentiometry electrodeposition and it was characterized by different chemical and electrochemical techniques.

Experimental procedures and techniques

 MnO_2 was electrodeposited from 0.5 M KMnO₄ solution by chronopotentiometry using stainless steel (SS) electrodes as working electrode. The electrodeposition was performed by applying 0.15 A cm⁻² for 30 minutes. The electrodeposition process can be illustrated using equation (1) [10]. It involves MnO_4^- reduction and the deposition rate is governed by diffusion–electromigration kinetics.

$MnO_4^- + 2H_2O + 3e^- \rightarrow MnO_2 + 4 OH^-$

(1)

Phase identification was performed using a Rigaku Miniflex II X-ray diffractometer employing Cu-K_{α} radiation ($\lambda = 0.15406$ nm). Infrared spectrum was measured using a Perkin Elmer FTIR spectrometer, Spectrum 100. The electrochemical properties were measured in 1 M Na₂SO₄ as electrolyte using a 3-electrode configuration system (the prepared MnO₂ as a working electrode, Ag/AgCl as a reference electrode and Pt wire as a counter electrode). The data were collected using an electrochemical workstation (Autolab/PGSTAT M101, Netherlands).

Results and discussion

1. Structural and morphological analyses

Fig. 1(a) shows the XRD pattern for electrodeposited MnO_2 . The detected peaks show formation of ramsdellite MnO_2 phase according to ICCD card (00-0050331). In addition, two peaks related stainless steel substrates are observed. The MnO_2 crystallite size was calculated using Scherrer formula and it was found to be 18 nm. The nanostructure MnO_2 was confirmed by FESEM study in our recent publication [2]. Fig. 1(b) shows FTIR spectrum for MnO_2 . The absorption bands at 510, 620 and 765 cm⁻¹ are assigned to the pairing mode between Mn-O stretching modes of tetrahedral and octahedral sites in MnO_2 . The absorption bands at 1090 cm⁻¹ is attributed to O–H bending vibrations combined with Mn atoms. It is obvious that the absorption bands at 3440 and 1635 cm⁻¹ belong to the absorbed water.

Fig. 1 XRD profile (a) and FTIR spectrum (b) of electrodeposited MnO₂.

2. Electrochemical measurements

Cyclic voltammetry and galvanostatic charge/discharge. Figure 2(a) shows the CV curve of electrodeposited MnO₂ at 10 mV s⁻¹. The CV for electrodeposited MnO₂ shows almost rectangular shape that reveals the ideal capacitive behaviour. The specific capacitance (C_{cv}) was calculated from the area under CV curve. The C_{cv} values decrease with increasing of scan rate (306, 265 and 227 F g⁻¹ at 10, 50 and 100 mV s⁻¹, respectively) as shown in Fig. 2(a). The electrodeposited MnO₂ film has fine particles which lead to high electroactive surface area and easy accessibility of Na⁺ ions which provides higher specific capacitance values. Electrodeposited MnO₂ film shows specific capacitance value higher than that reported for MnO₂ film (116 F g⁻¹ at 50 mV s⁻¹) [5]. The proposed mechanism for charge storage on MnO₂ is based on the intercalation/deintercalation of Na⁺ in the electrode material and the adsorption of Na⁺ on the MnO₂ electrode surface as represented by the equations (2) and (3) [9]. The charge/discharge curves of MnO₂ at the voltage window of 0–1 V are displayed in Fig. 2(b) at 1 A g⁻¹. The curves are almost linear with neglected iR drop indicating reversibility of the electrode with good conductivity.

	Beed conductivity.	
$MnO_2 + M^+ + e^- \leftrightarrows MnOOM$	$(M^+ = Na^+ \text{ or } H_3 O^+)$	(2)
$(MnO_2)_{surface} + M^+ + e^- \leftrightarrows (MnOOM)_{surface}$	$(M^+ = Na^+ \text{ or } H_3O^+)$	(3)

Fig. 2. Cyclic voltamogram at 10 mV s⁻¹ and variation of specific capacitance as a function of scan rate (a) and galvanostatic charge/discharge at 1 A g⁻¹ and variation of specific capacitance as a function of current densities (b) for electrodeposited MnO₂.

The specific capacitance (C_{cdc}) can be calculated from charge/discharge using the equation reported elsewhere [8]. The C_{cdc} values were 238, 207 and 188 F g⁻¹ at 0.8, 1, and 2 A g⁻¹, respectively. These values are higher than those reported for MnO₂ nanoparticles (201 F g⁻¹ at 1 A g⁻¹) [11].

Life stability and impedance studies. The stability test of electrodeposited MnO₂ was performed using galvanostatic charge/discharge at 3 A g⁻¹. The electrodeposited MnO₂ shows high stability of more than 90% over 1000 cycles (Fig. 3(a)). This is higher than that obtained by other studies [8]. This is a good evidence for the stable nature of MnO₂ electrode which suggests it as a good candidate for supercapacitor applications. The electrochemical impedance spectroscopy (EIS) was done in the frequency range of 0.01 Hz–50 kHz. *Nyquist* plot for electrodeposited MnO₂ is shown in Fig. 3(b), the inset shows the zoomed view at high frequency region. A small semicircle at the high frequency region and a straight line at the low frequency region can be seen. MnO₂ nanoparticles shows low solution resistance (R_s) of 1.52 Ω and charge transfer resistance (R_{ct}) of 1.30 Ω , indicating high electrical conductivity of the MnO₂ materials. The vertical linear section at the low frequency region demonstrates a pure capacitive behaviour. EIS measurement indicates that the electrodeposited MnO₂ has good capacitive performance.

Fig. 3 Cycling stability (a) at 3 A g^{-1} and *Nyquist* plot (b) of MnO₂ at open circuit potential; Inset shows the magnified *Nyquist* plot at high frequency region.

Conclusion

 MnO_2 nanoparticles has been successfully obtained by electrodeposition process from KMnO₄ solution. Fine aggregate of MnO_2 particles (18 nm) are confirmed by XRD analysis. MnO_2 nanoparticles shows very high specific capacitance values calculated from CV and charge-discharge data of 306 F g⁻¹ and 238 F g⁻¹ at 10 mV s⁻¹ and 0.8 A g⁻¹ respectively. Electrodeposited MnO_2 shows long cycle life of 90% over 1000 cycles. The low R_s and R_{ct} values obtained from impedance studies indicate that the good electrochemical performance of electrodeposited MnO_2 electrode.

Acknowledgements

KF Chong and co-workers would like to acknowledge the funding from the Ministry of Education Malaysia in the form of MTUN-COE grant RDU121212 and RDU121213.

References

- [1] C.D. Lokhande, D.P. Dubal, O.-S. Joo, Metal oxide thin film based supercapacitors, Curr. Appl Phys., 11 (2011) 255-270.
- [2] G.A.M. Ali, L.L. Tan, R. Jose, M.M. Yusoff, K.F. Chong, Electrochemical performance studies of MnO₂ nanoflowers recovered from spent battery, Mater. Res. Bull., 60 (2014) 5-9.
- [3] G.A.M. Ali, O.A. Fouad, S.A. Makhlouf, M.M. Yusoff, K.F. Chong, Co₃O₄/SiO₂ nanocomposites for supercapacitor application, J. Solid State Electrochem., 18 (2014) 2505-2512
- [4] G.A.M. Ali, S.A.B. Abdul Manaf, A. Kumar, K.F. Chong, G. Hegde, High performance supercapacitor using catalysis free porous carbon nanoparticles. J. Phys. D: Appl. Phys., 47 (2014) 495307-495313.
- [5] J. Wei, N. Nagarajan, I. Zhitomirsky, Manganese oxide films for electrochemical supercapacitors, J. Mater. Process. Technol., 186 (2007) 356-361.
- [6] A.K.M. Farid ul Islam, R. Islam, K.A. Khan, Y. Yamamoto, Temperature effect on the electrical properties of pyrolytic MnO₂ thin films prepared from Mn(C₂H₃O₂)₂·4H₂O, Renewable Energy, 32 (2007) 235-247.
- [7] S. Ching, D.J. Petrovay, M.L. Jorgensen, S.L. Suib, Sol-gel synthesis of layered birnessitetype manganese oxides, Inorg. Chem., 36 (1997) 883-890.
- [8] D. Yan, Z. Guo, G. Zhu, Z. Yu, H. Xu, A. Yu, MnO₂ film with three-dimensional structure prepared by hydrothermal process for supercapacitor, J. Power Sources, 199 (2012) 409-412.
- [9] D.P. Dubal, D.S. Dhawale, T.P. Gujar, C.D. Lokhande, Effect of different modes of electrodeposition on supercapacitive properties of MnO₂ thin films, Appl. Surf. Sci., 257 (2011) 3378-3382.
- [10] G.M. Jacob, I. Zhitomirsky, Microstructure and properties of manganese dioxide films prepared by electrodeposition, Appl. Surf. Sci., 254 (2008) 6671-6676.
- [11] M. Kundu, L. Liu, Direct growth of mesoporous MnO₂ nanosheet arrays on nickel foam current collectors for high-performance pseudocapacitors, J. Power Sources, 243 (2013) 676-681.

Material Science Technology and Global Sustainability

10.4028/www.scientific.net/AMR.1113

$\label{eq:electrochemical Properties of Electrodeposited \ \mathbf{MnO}_2 \ \mathbf{Nanoparticles}$

10.4028/www.scientific.net/AMR.1113.550